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Abstract

In statistical machine translation (SMT), it is
known that performance declines when the
training data is in a different domain from the
test data. Nevertheless, it is frequently nec-
essary to supplement scarce in-domain train-
ing data with out-of-domain data. In this pa-
per, we first try to relate the effect of the out-
of-domain data on translation performance to
measures of corpus similarity, then we sep-
arately analyse the effect of adding the out-
of-domain data at different parts of the train-
ing pipeline (alignment, phrase extraction, and
phrase scoring). Through experiments in 2 do-
mains and 8 language pairs it is shown that
the out-of-domain data improves coverage and
translation of rare words, but may degrade the
translation quality for more common words.

1 Introduction

In statistical machine translation (SMT), domain
adaptation can be thought of as the problem of train-
ing a system on data mainly drawn from one do-
main (e.g. parliamentary proceedings) and trying
to maximise its performance on a different domain
(e.g. news). There is likely to be some parallel data
similar to the test data, but as such data is expen-
sive to create, it tends to be scarce. The concept of
“domain” is rarely given a precise definition, but it is
normally understood that data from the same domain
is in some sense similar (for example in the words
and grammatical constructions used) and data from
different domains shows less similarities. Data from
the same domain as the test set is usually referred
to as in-domain and data from a different domain is
referred to as out-of-domain.

The aim of this paper is to shed some light on
what domain actually is, and why it matters. The
fact that a mismatch between training and test data
domains reduces translation performance has been
observed in previous studies, and will be confirmed
here for multiple data sets and languages, but the
question of why domain matters for performance has
not been fully addressed in the literature. Exper-
iments in this paper will be conducted on phrase-
based machine translation (PBMT) systems, but
similar conclusions are likely to apply to other types
of SMT systems. Furthermore, we will mainly be
concerned with the effect of domain on the transla-
tion model, since it depends on parallel data which
is more likely to be in short supply than monolingual
data, and domain adaptation for language modelling
has been more thoroughly studied.

The effect of a shift of domain in the parallel data
is complicated by the fact that training a translation
model is a multi-stage process. First the parallel
data is word-aligned, normally using the IBM mod-
els (Brown et al., 1994), then phrases are extracted
using some heuristics (Och et al., 1999) and scored
using a maximum likelihood estimate. Since the ef-
fect of domain may be felt at the alignment stage, the
extraction stage, or the scoring stage, we have de-
signed experiments to try to tease these apart. Exper-
iments comparing the effect of domain at the align-
ment stage with the extraction and scoring stages
have already been presented by (Duh et al., 2010), so
we focus more on the differences between extraction
and scoring. In other words, we examine whether
adding more data (in or out-of domain) helps im-
prove coverage of the phrase table, or helps improve
the scoring of phrases.

A further question that we wish to address is



whether adding out-of-domain parallel data affects
words with different frequencies to different de-
grees. For example, a large out-of-domain data set
may improve the translation of rare words by pro-
viding better coverage, but degrade translation of
more common words by providing erroneous out-of-
domain translations. In fact, the evidence presented
in Section 3.5 will show a much clearer effect on low
frequency words than on medium or high frequency
words, but the total token count of these low fre-
quency words is still small, so they don’t necessarily
have much effect on overall measures of translation
quality.

In summary, the main contributions of this paper
are:
• It presents experiments on 8 language pairs

and 2 domains showing the effect on BLEU of
adding out-of-domain data.
• It provides evidence that the difference be-

tween in and out-of domain translation perfor-
mance is correlated with differences in word
distribution and out-of-vocabulary rates.
• It develops a method for separating the effects

of phrase extraction and scoring, showing that
good coverage is nearly always more important
than good scoring, and that out-of-domain data
can adversely affect phrase scores.
• It shows that adding out-of-domain data clearly

improves translation of rare words, but may
have a small negative effect on more common
words.

2 Related Work

The most closely related work to the current one is
that of (Duh et al., 2010). In this paper they consider
the domain adaptation problem for PBMT, and in-
vestigate whether the out-of-domain data helps more
at the word alignment stage, or at the phrase extrac-
tion and scoring stages. Extensive experiments on
4 different data sets, and 10 different language pairs
show mixed results, with the overall conclusion be-
ing that it is difficult to predict how best to include
out-of-domain data in the PBMT training pipeline.
Unlike in the current work, Duh et al. do not sepa-
rate phrase extraction and scoring in order to anal-
yse the effect of domain on them separately. They
make the point that adding extra out-of-domain data

may degrade translation by introducing unwanted
lexical ambiguity, showing anecdotal evidence for
this. Similar arguments were presented in (Sennrich,
2012).

A recent paper which does attempt to tease apart
phrase extraction and scoring is (Bisazza et al.,
2011). In this work, the authors try to improve a
system trained on in-domain data by including extra
entries (termed “fill-up”) from out-of-domain data –
this is similar to the nc+epE and st+epE systems
in Section 3.4. It is shown by Bisazza et al. that this
fill-up technique has a similar effect to using MERT
to weight the in and out-of domain phrase tables. In
the experiments in Section 3.4 we confirm that fill-
up techniques mostly provide better results than us-
ing a concatenation of in and out-of domain data.

There has been quite a lot of work on finding ways
of weighting in and out-of domain data for SMT
(as opposed to simply concatenating the data sets),
both for language and translation modelling. Inter-
polating language models using perplexity is fairly
well-established (e.g. Koehn and Schroeder (2007)),
but for phrase-tables it is unclear whether perplexity
minimisation (Foster et al., 2010; Sennrich, 2012) or
linear or log-linear interpolation (Foster and Kuhn,
2007; Civera and Juan, 2007; Koehn and Schroeder,
2007) is the best approach. Also, other authors (Fos-
ter et al., 2010; Niehues and Waibel, 2010; Shah et
al., 2010) have tried to weight the input sentences or
extracted phrases before the phrase tables are built.
In this type of approach, the main problem is how
to train the weights of the sentences or phrases, and
each of the papers has followed a different approach.

Instead of weighting the out-of-domain data,
some authors have investigated data selection meth-
ods for domain adaptation (Yasuda et al., 2008;
Mansour et al., 2011; Schwenk et al., 2011; Axelrod
et al., 2011). This is effectively the same as using
a 1-0 weighting for input sentences, but has the ad-
vantage that it is usually easier to tune a threshold
than it is to train weights for all input sentences or
phrases. The other advantage of doing data selection
is that it can potentially remove noisy (e.g. incor-
rectly aligned) data. However it will be seen later in
this paper that out-of-domain data can usually con-
tribute something useful to the translation system,
so the 1-0 weighting of data-selection may be some-
what heavy-handed.



3 Experiments

3.1 Corpora and Baselines

The experiments in this paper used data from
the WMT09 and WMT11 shared tasks (Callison-
Burch et al., 2009; Callison-Burch et al., 2011), as
well as OpenSubtitles data1 released by the OPUS
project (Tiedemann, 2009).

From the WMT data, both news-commentary-
v6 (nc) and europarl-v6 (ep) were used for
training translation models and language mod-
els, with nc-devtest2007 used for tuning and
nc-test2007 for testing. The experiments were
run on all language pairs used in the WMT shared
tasks, i.e. English (en) into and out of Spanish (es),
German (de), French (fr) and Czech (cs).

From the OpenSubtitles (st) data, we chose
8 language pairs – English to and from Span-
ish, French, Czech and Dutch (nl) – selected be-
cause they have at least 200k sentences of parallel
data available. 2000 sentence tuning and test sets
(st-dev and st-devtest) were selected from
the parallel data by extracting every nth sentence,
and a 200k sentence training corpus was selected
from the remaining data.

Using test sets from both news-commentary and
OpenSubtitles gives two domain adaptation tasks,
where in both cases the out-of-domain data is eu-
roparl, a significantly larger training set than the in-
domain data. The three data sets in use in this paper
are summarised in Table 1.

The translation systems consisted of phrase ta-
bles and lexicalised reordering tables estimated us-
ing the standard Moses (Koehn et al., 2007) train-
ing pipeline, and 5-gram Kneser-Ney smoothed lan-
guage models estimated using the SRILM toolkit
(Stolcke, 2002), with KenLM (Heafield, 2011) used
at runtime. Separate language models were built
on the target side of the in-domain and out-of-
domain training data, then linearly interpolated us-
ing SRILM to minimise perplexity on the tuning
set (e.g. Koehn and Schroeder (2007)). Tuning
of models used minimum error rate training (Och,
2003), repeated 3 times and averaged (Clark et
al., 2011). Performance is evaluated using case-
insensitive BLEU (Papineni et al., 2002), as imple-

1www.opensubtitles.org

mented using the Moses multi-bleu.pl script.

Name Language
pairs

train tune test

Europarl en↔fr 1.8M n/a n/a
(ep) en↔es 1.8M n/a n/a

en↔de 1.7M n/a n/a
en↔cs 460k n/a n/a
en↔nl 1.8M n/a n/a

News en↔fr 114k 1000 2000
Commentary en↔es 130k 1000 2000
(nc) en↔de 135k 1000 2000

en↔cs 122k 1000 2000
Subtitles en↔fr 200k 2000 2000
(st) en↔es 200k 2000 2000

en↔nl 200k 2000 2000
en↔cs 200k 2000 2000

Table 1: Summary of the data sets used, with ap-
proximate sentence counts

3.2 Comparing In-domain and Out-of-domain
Data

The aim of this section is to provide both a quali-
tative and quantitative comparison of the three data
sets used in this paper.

Firstly, consider the extracts from the English sec-
tions of the three training sets shown in Figure 1.
The first extract, from the Europarl corpus, shows a
formal style with long sentences. However this is
still spoken text so contains a preponderance of first
and second person forms. In terms of subject mat-
ter, the corpus covers a broad range of topics, but all
from the angle of European legislation, institutions
and policies. Where languages (e.g. English, French
and Spanish) have new world and old world variants,
Europarl sticks to the old world variants.

The extract from the News Commentary corpus
again shows a formal tone, but because this is news
analysis, it tends to favour the third person. It is writ-
ten text, and covers a wider range of subjects than
Europarl, and also encompasses both new and old
world versions of the European languages.

The Subtitles text shown in the last example ap-
pears qualitatively more different from the other
two. It is spoken text, like Europarl, but consists of
short, informal sentences with many colloquialisms,
as well as possible optical character recognition er-



Although, as you will have seen, the dreaded ’millennium bug’ failed to materialise, still the people in a
number of countries suffered a series of natural disasters that truly were dreadful.
You have requested a debate on this subject in the course of the next few days, during this part-session.
In the meantime, I should like to observe a minute’ s silence, as a number of Members have requested, on
behalf of all the victims concerned, particularly those of the terrible storms, in the various countries of the
European Union.

(a) Europarl

Desperate to hold onto power, Pervez Musharraf has discarded Pakistan’s constitutional framework and
declared a state of emergency.
His goal?
To stifle the independent judiciary and free media.
Artfully, though shamelessly, he has tried to sell this action as an effort to bring about stability and help
fight the war on terror more effectively.

(b) News commentary

I’il call in 30 minutes to check
Is your mother here, too?
Why are you outside?
It’s no fun listening to women’s talk
Well, why don’t we go in together

(c) OpenSubtitles

Figure 1: Extracts from the English portion of the training corpora

rors. It is likely to contain a mixture of regional vari-
ations of the languages, reflecting the diversity of the
film sources.

In order to obtain a quantitative measure of do-
main differences, we used both language model
(LM) perplexity, and out-of-vocabulary (OOV) rate,
in the two test domains. For the nc domain, per-
plexity was compared by training trigram LMs (with
SRILM and Kneser-Ney smoothing) on each of the
ep, nc and ep+nc training sets, taking the inter-
section of the ep and nc vocabularies as the LM
vocabulary. The perplexities of the nc test set wer
calculated using each of the LMs. A correspond-
ing set of LMs was trained to compare perplexities
on the st test set, and all perplexity comparisons
were performed on all five languages. The SRILM
toolkit was also used to calculate OOV rates on the
test set, by training language models with an open
vocabulary, and using no unknown word probability
estimation.

The perplexities and OOV rates on each test cor-
pora are shown in Figure 2. The pattern of perplexi-
ties is quite distinct across the two test domains, with

the perplexity from out-of-domain data relatively
much higher for the st test set. The in-domain data
LM also shows the lowest perplexity consistently on
this test set, whilst for nc, the in-domain LM has
a similar perplexity to the ep+nc LM. In fact for
3/5 languages (fr,cs and de) the ep+nc LM has the
lowest perplexity.

With regard to the OOV rates, it is notable that
for nc the rate is actually higher for the in-domain
LM than the out-of-domain LM in three of the lan-
guages: French, German and Spanish. The most
likely reason for this is that these languages have
a relatively rich morphology, so the larger out-
of-domain corpus (Table 1) gives greater cover-
age of the different grammatical suffixes. Czech
shows a different pattern because in this case the
out-of-domain corpus is not much bigger than the
in-domain corpus, and English is morphologically
much simpler so the increase in corpus size does not
help the OOV rate so much.
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(b) Test on subtitles.

Figure 2: Comparison of perplexities and OOV rates on in-domain test data

3.3 Comparing Translation Performance of In
and Out-of-domain Systems

Translation performance was measured on each of
the test sets (nc and st) using systems built from
just the in-domain parallel data, from just the out-of-
domain parallel data, and on a concatenation of the
in and out-of domain data. In other words, systems
built from the ep, nc and ep+nc parallel texts were
evaluated on the nc test data, and systems built from
ep, st and ep+st were evaluated on the st test
data. In all cases, the parallel training set was used
to build both the phrase table and the lexicalised re-
ordering models, the language model was the inter-
polated one described in Section 3.1, and the system
was tuned on data from the same domain as the test
set.

From Figure 3 it is clear that the difference be-
tween the in and out-of domain training sets is much
bigger for st than for nc. The BLEU scores on nc
for the nc trained systems are on average 1.3 BLEU

points higher than those for the ep trained systems,
whilst the scores on st gain an average of 6.0 BLEU

points when the training data is switched from ep
to st. The patterns are quite consistent across lan-
guages for the st tested systems, with the gains
varying just from 5.2 to 7.2. However for the nc

tested systems there are some language pairs which
show a gain of more than 2 BLEU points when mov-
ing from out-of to in-domain training data (cs-en,
en-es and es-en), whereas en-fr shows no change.
The main link between the perplexity and OOV re-
sults in Figure 2 and the BLEU score variations in
Figure 3 is that the larger in/out differences between
the two domains is reflected in larger BLEU differ-
ences. However it is also notable that the two lan-
guages which display a rise in perplexity between
nc and ep+nc are es and en, and for both es-en and
en-es the ep+nc translation system performs worse
than the nc trained system.

The BLEU gain from concatenating the in and out-
of domain data, over just using the in-domain data
can be quite small. For the nc domain this averages
at 0.5 BLEU (with 3/8 language pairs showing a de-
crease), whilst for the st domain the average gain is
only 0.2 BLEU (with again 3/8 language pairs show-
ing a decrease). So even though adding the out-of-
domain data increases the training set size by a fac-
tor of 10 in most cases, its effect on BLEU score is
small.
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Figure 3: Comparison of translation performance using models from in-domain, out-of-domain and joint
data.

3.4 Why Does Adding Parallel Data Help?

In the previous section it was found that, across all
language pairs and both data sets, adding in-domain
data to an out-of-domain training set nearly always
has a positive impact on performance, whilst adding
out-of-domain data to an in-domain training set can
sometimes have a small positive effect. In this sec-
tion several experiments are performed with “inter-
mediate” phrase tables (built from a single parallel
corpus, augmented with some elements of the other
parallel corpus) in order to determine how different
aspects of the extra data affect performance. In par-
ticular, the experiments are designed to show the ef-
fect of the extra data on the alignments, the phrase
scoring and the phrase coverage, whether adding in-
domain data to an existing out-of-domain trained
system, or vice-versa.

For each of the language pairs used in this paper,
and each of the two domains, two series of experi-
ments were run comparing systems built from a sin-
gle parallel training set, intermediate systems, and
systems built from a concatenation of the in and out-
of-domain parallel data sets. Only the parallel data
was varied, the language models were as described

in Section 3.1, and the lexicalised reordering mod-
els were built from both training sets in all cases,
except for the systems built from a single parallel
data set2. This gives a total of four series of experi-
ments, where the ordered pair of data sets (x,y) was
set to one of (ep,nc), (nc,ep), (ep,st), (st,ep).
In each of these series, the following translation sys-
tems were trained:
x The translation table and lexicalised reordering

model were estimated from the x corpus alone.
x+y The translation system built from the x and y

parallel corpora concatenated.
x+yAAs x but using the additional y corpus to cre-

ate the alignments. This means that GIZA++
was run across the entire x+y corpus, but only
the x section of it was used to extract and score
phrases.

x+yW As x+yA but using the phrase scores from
the x+y phrase table. This is effectively the
x+y system, with any entries in the phrase table
that are just found in the y corpus removed.

2Further experiments were run using the parallel data from a
single data set to build the translation model, and both data sets
to build the lexicalised reordering model, but the difference in
score compared to the x system was small (< 0.1 BLEU)



x+yE As x+yA but adding the extra entries from
the x+y phrase table. This is effectively the
x+y system, but with the scores on all phrases
that are found in x phrase table set to their val-
ues from that table.

All systems were tuned and tested on the appro-
priate in-domain data set (either nc or st). Note
that in the intermediate systems, the phrase table
scores may no longer correspond to valid probability
distributions, but this is not important as the proba-
bilistic interpretation is never used in decoding any-
way.

The graphs in Figure 4 show the performance
comparison between the single corpus systems, the
intermediate systems, and the concatenated corpus
systems, averaged across all 8 language pairs. Table
2 shows the full results broken down by language
pair, for completeness, but the patterns are reason-
ably consistent across language pair.

Firstly, compare the x+yW and x+yE systems, i.e.
the systems where we add just the weights from the
second parallel data set versus those where we add
just the entries. When x is the out-of-domain (ep)
data, then it is clearly more profitable to update the
phrase-table entries than the weights from the in-
domain data. In fact for the systems tested on st,
the difference is quite striking with a +5.7 BLEU

gain for the ep+stE system over the baseline ep
system, but only a +1.5 gain for the ep+stW sys-
tem. For the systems tested on the nc, adding the
entries from nc gives a larger gain in BLEU than
adding the weights (+1.3 versus +0.8), but both
improve the BLEU scores over the ep+ncA system.
The conclusion is that the extra entries from the in-
domain data (the “fill-up” of Bisazza et al. (2011))
are more important than the improvements in phrase
scoring that in-domain data may provide.

Looking at the other two sets of x+yW and x+yE
systems, i.e. those where x is the in-domain data,
tells another story. In this case, the results on both
the nc and st test sets (Figure 4(b)) suggest that it is
generally more useful to use the out-of-domain data
as only a source of extra phrase-table entries. This is
because the x+epE systems are the highest scoring
in both cases, scoring higher than systems built from
all the data concatenated by margins of 0.5 (for nc)
and 0.4 (for st). This pattern is consistent across
all the language pairs for nc, and across 5 of the 8

language pairs for st. Using the out-of-domain data
set to update only the weights (the x+epW systems)
generally degrades performance when compared to
the systems that only use the ep data at alignment
time (the x+epA systems).

The size of the effect of adding extra data to the
alignment stage only is mixed (as observed by (Duh
et al., 2010)), but in general all the x+yA systems
show an improvement over the x systems. In fact,
for the st domain, adding ep at the alignment stage
is the only consistent way to improve BLEU. Adding
the weights, entries, or the complete out-of-domain
data set does not always help.

3.5 Word Precision Versus Frequency
The final set of experiments addresses the question
of whether the change of translation quality when
adding out-of-domain has a different effect depend-
ing on word frequency. To do this, the systems
trained on in-domain only are compared with the
systems trained on all data concatenated, using a
technique for measuring the precision of the trans-
lation for each word type.

To calculate the precision of a word type, it is
necessary to examine each translated sentence to
see which source words were translated correctly.
This is done by recording the word alignment in the
phrase mappings and tracking it through the transla-
tion process. If a word is produced multiple times in
the translation, but occurs a fewer number of times
in the reference, then it is assigned partial credit.
Many-to-many word alignments are treated simi-
larly. Precision for each word type is then calculated
in the usual way, as the number of times that word
appears correctly in the output, divided by the to-
tal number of appearances. The word types are then
binned according to the log2 of their frequency in
the in-domain corpus and the average precision for
each bin calculated, then these are in turn averaged
across language pairs.

The graphs in Figure 5 compare the in-domain
source frequency versus precision relationship for
systems built using just the in-domain data, and sys-
tems built using both in and out-of domain data.
There is a consistent increase in precision for lower
frequency words (occurring less than 30 times in
training), but the total number of occurrences of
these words is low, so they contribute less to over-
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Figure 4: Showing the performance change when starting with either in or out-of domain data, and adding
elements of the other data set. The “A” indicates that the second data set is only used for alignments, the “W”
indicates that it contributes alignments and phrase scores, and the “E” indicates that it contributes alignments
and phrase entries. The figures above each bar shows the performance change relative to the single corpus
system.

System cs-en en-cs de-en en-de fr-en en-fr es-en en-es
ep 23.3 13.4 25.5 17.5 28.9 29.2 35.4 34.5
ep+ncA 23.5 (+0.2) 13.8 (+0.4) 25.9 (+0.4) 17.9 (+0.4) 29.3 (+0.4) 29.6 (+0.4) 35.7 (+0.3) 34.9 (+0.5)
ep+ncW 24.0 (+0.7) 14.2 (+0.8) 26.3 (+0.8) 18.2 (+0.7) 29.4 (+0.5) 29.8 (+0.6) 36.3 (+0.9) 35.6 (+1.1)
ep+ncE 26.2 (+2.9) 14.0 (+0.6) 27.0 (+1.5) 18.5 (+1.0) 29.7 (+0.9) 30.0 (+0.8) 37.0 (+1.7) 35.7 (+1.3)
nc 26.1 (+2.9) 14.3 (+0.9) 26.7 (+1.2) 18.0 (+0.6) 29.3 (+0.4) 29.1 (-0.1) 37.6 (+2.2) 36.5 (+2.1)
nc+epA 26.8 (+3.5) 14.6 (+1.2) 27.5 (+2.0) 18.5 (+1.0) 30.4 (+1.5) 29.9 (+0.7) 37.7 (+2.3) 36.4 (+2.0)
nc+epW 26.6 (+3.3) 14.4 (+1.0) 27.4 (+1.9) 18.4 (+1.0) 29.5 (+0.6) 29.8 (+0.6) 37.2 (+1.8) 36.5 (+2.0)
nc+epE 27.4 (+4.1) 14.7 (+1.3) 28.1 (+2.6) 19.0 (+1.5) 30.9 (+2.0) 30.2 (+1.0) 38.4 (+3.0) 36.9 (+2.4)
ep+nc 26.9 (+3.6) 14.2 (+0.8) 27.4 (+1.9) 18.8 (+1.3) 30.4 (+1.5) 30.0 (+0.8) 37.4 (+2.0) 36.4 (+2.0)
System cs-en en-cs nl-en en-nl fr-en en-fr es-en en-es
ep 10.9 6.9 18.2 15.7 14.5 13.8 19.1 17.1
ep+stA 11.9 (+1.0) 7.5 (+0.6) 19.0 (+0.8) 16.3 (+0.5) 15.0 (+0.5) 14.1 (+0.3) 19.8 (+0.7) 17.8 (+0.7)
ep+stW 12.2 (+1.3) 8.1 (+1.2) 20.0 (+1.7) 17.4 (+1.7) 15.8 (+1.3) 14.9 (+1.1) 20.8 (+1.7) 18.8 (+1.8)
ep+stE 18.0 (+7.1) 12.4 (+5.5) 22.5 (+4.2) 20.6 (+4.9) 19.6 (+5.1) 19.9 (+6.1) 25.6 (+6.5) 23.3 (+6.3)
st 18.0 (+7.2) 12.2 (+5.3) 23.4 (+5.1) 21.3 (+5.6) 19.7 (+5.2) 19.8 (+6.0) 26.3 (+7.2) 23.2 (+6.1)
st+epA 18.4 (+7.6) 12.4 (+5.5) 23.6 (+5.4) 21.3 (+5.6) 20.2 (+5.7) 20.1 (+6.3) 26.4 (+7.3) 23.5 (+6.5)
st+epW 18.2 (+7.3) 12.2 (+5.3) 22.4 (+4.2) 21.0 (+5.3) 19.9 (+5.4) 19.8 (+6.0) 25.8 (+6.7) 23.2 (+6.1)
st+epE 19.1 (+8.3) 12.5 (+5.6) 24.0 (+5.8) 21.7 (+6.0) 20.6 (+6.1) 20.9 (+7.1) 26.0 (+6.9) 23.7 (+6.6)
ep+st 18.5 (+7.6) 12.5 (+5.6) 23.0 (+4.8) 21.2 (+5.5) 20.4 (+5.9) 20.2 (+6.5) 26.0 (+6.9) 23.8 (+6.8)

Table 2: Complete scores for the experiments described in Section 3.4 and summarised in Figure 4. Naming
of the systems is explained in the text, and in the caption for Figure 4
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Figure 5: Performance comparison of in-domain systems versus systems built from in and out-of domain
data concatenated. Precision is plotted against log2 of in-domain training frequency, and averaged across all
8 language pairs. The width of the bars indicates the average total number of occurrences in the test set.

all measures of translation quality. For the words
with moderate training set frequencies, the precision
is actually slightly higher for the systems built with
just in-domain data, an effect that is more marked
for the st domain.

4 Conclusions

In this paper we have attempted to give an in-
depth analysis of the domain adaptation problem for
two different domain adaptation problems in phrase-
based MT. The differences between the two prob-
lems are clearly illustrated by the results in Fig-
ures 2 and 3, where we see that the difference be-
tween the in-domain and out-of-domain data are
larger for the OpenSubtitles domain than for the
News-Commentary domain. This can be detected
by the differences in word distribution and out-of-

vocabulary rates observed in Figure 2, and is re-
flected by the differing translation results in Figure
3.

However, the experiments of Sections 3.4 and 3.5
show some common themes emerging in the two do-
mains. In both cases, the out-of-domain data helps
most when it is just allowed to add entries (i.e. “fill
in”) the phrase-table, and using the scores provided
by out-of-domain data has a tendency to be harmful
to translation quality. The precision results of Sec-
tion 3.5 show out-of-domain data (when it is sim-
ply added to the training set) mainly helping with
the low frequency words, and having a neutral or
harmful effect for higher frequency words. This ex-
plains why approaches which try to weight the out-
of-domain data in some way (e.g. corpus weighting
or instance weighting) can be more successful than



simply concatenating data sets. It also suggests that
the way forward is to look for methods that use the
out-of-domain data mainly for rarer words, and not
to change translations which have a lot of evidence
in the in-domain data.
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