
1

SEVENTH FRAMEWORK PROGRAMME

THEME ICT-2011.4.2(a)

Language Technologies

ACCEPT
Automated Community Content Editing PorTal

www.accept-project.eu

Starting date of the project: 1 January 2012

Overall duration of the project: 36 months

Weighting of Pre-editing Rules

Work package n° 9 Name: MT Evaluation

Deliverable n° 9.3 Name: Weighting of Pre-editing Rules

Due date: 30 June 2014 Submission date: 30 June 2014

Dissemination level: PU

Organisation name of lead contractor for this deliverable: ACROLINX

Author(s): Robert Grabowski

Internal reviewer(s): Pierrette Bouillon, Violeta Seretan

Proofreading: Manny Rayner

The research leading to these results has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013) under grant
agreement n° 288769.

2

Contents
1 Objectives of the Deliverable .. 3

2 Collecting Flag Feedback on the Acrolinx Server .. 3

3 Collecting Usage Feedback on the ACCEPT Server .. 5

4 Analysing the Feedback ... 6

4.1 Converting ACCEPT Usage Information into Acrolinx Flag Feedback 6

4.2 Flag Feedback Pipeline .. 6

4.3 Flag Metrics ... 6

4.4 Machine-Learning Correct Flags .. 9

5 Adapting the Application of Rules ... 9

6 Conclusion ... 10

References ... 10

3

Weighting of Pre-editing Rules

1 Objectives of the Deliverable
The objective of this deliverable is to provide methods to adapt the application of pre-editing rules
based on feedback from users of these rules. More specifically, the aim is to establish tools that help
to continuously monitor and analyse how ACCEPT users work with the pre-editing rules in practice, to
identify potential problems with specific rules, and to adapt the rules accordingly.

The developed tools and methods fall into four categories:

- Collecting flag feedback on the Acrolinx server,
- Collecting usage information on the ACCEPT server,
- Analysing the feedback,
- Adapting rules according to user feedback.

The deliverable is related to Task 9.6: Evaluate how users interact with pre- and post-editing rules. In
the framework of this task, a separate experiment was carried out with volunteers from the French
Norton community forum, in which the users were asked to apply pre-editing rules to a pre-defined
corpus [4]. The findings of this experiment will be summarized in Deliverable D 9.2.4: Survey of
evaluation results. In the present deliverable, however, the objective is to analyse the behaviour of
users while they edit their own content. We describe methods and tools for logging and evaluating
user interaction with rules which can be used at any time, as opposed to providing one-time results.
The following sections of the deliverable describe these methods and tools in detail.

2 Collecting Flag Feedback on the Acrolinx Server
The Acrolinx server already provides functionality for collecting feedback from the interaction of

users with rule flags, and for logging this information in its reporting database [4]. We have enabled

this functionality on the Acrolinx servers hosted for the ACCEPT project.

To submit feedback of this kind, a user needs to use feedback-enabled Acrolinx plug-ins and clients,

more specifically, the plug-in for Microsoft Word, and the Batch Checker client. The actions of a user

in the context menu of a flag are interpreted as implicit feedback according to Table 1.

4

Action in context menu Effect Interpreted as feedback

Select a suggestion The flagged text is replaced
with the suggestion

The flag and the suggestion are accepted

“Edit flag” The flag is removed, the
cursor placed on text for
user to edit

The flag is accepted, but either there are
no suggestion or none of them are
accepted

“Ignore flag” The flag is removed The flag was rejected

“Ignore all flags” The flag and all similar flags
are removed

The flag on this kind of text pattern was
generally rejected

Select rule name Rule help is displayed The rule name and suggestions were not
considered self-descriptive

Do nothing Menu stays open A long time spent in the menu may
indicate a difficult decision

“Next/Previous flag” or
close menu

Flag stays in document The flag is passively ignored by the user

Table 1: User actions in the Acrolinx plug-in and collected feedback

With the feedback functionality enabled, the plug-in sends the corresponding feedback for each user

action to the Acrolinx server. Furthermore, the menu also provides explicit feedback options enabled

in the context menu, with which the user can submit a comment on a flag, and suggests a new

replacement option (suggestion). The screenshot in Error! Reference source not found. shows a

eedback-enabled context menu.

Figure 1: Feedback-enabled context menu in the Acrolinx plug-in for MS Word

The Acrolinx server stores any feedback received along with the details of the flag (such as the name

of the rule, the marked text, and the sentence), and with information on the Acrolinx check session

(such as the user ID, the rule set used, and the name of the document).

5

3 Collecting Usage Feedback on the ACCEPT Server
When the user works with the ACCEPT pre-editing plug-in, the plug-in communicates with the

ACCEPT Server, which in turn handles the communication with an Acrolinx server. Details of this

architecture can be found in Deliverable 5.1: Browser-based client prototype used to access Acrolinx

IQ server. Although the ACCEPT server does not send any feedback information to the Acrolinx

server, it collects extensive usage information itself, and makes it available via an API. Details of this

API are documented in detail within the “Learn” section of the ACCEPT portal and in

deliverable D 5.1.

The plug-in collects usage information both for parent sessions and for child sessions. A parent

session in the sense of the ACCEPT API runs from opening to closing the ACCEPT plug-in window.

A child session runs from one Acrolinx check to the next, or to the end of the parent session.

For each parent session, the usage data contains information such as the anonymized user ID, the

time of the beginning and end of the check, and the used Acrolinx rule set and language.

For each child session, the usage information contains the following:

- how the text looked like before and after the session,

- which Acrolinx flags were found (position, flag type, rule name, suggestions),

- how the user interacted with the flag.

We interpret the various possible user actions as implicit feedback on the flags as shown in Table 2.

user action Effect Interpreted as feedback

Select a suggestion The flagged text is replaced
with the suggestion

The flag and the suggestion are
accepted

“Ignore rule” All the flags for this rule are
removed now and in the
future

The entire rule is rejected

“Learn Word” Spelling flags on this word
are removed now and in
the future

Spelling flags on this word are rejected

Hover over flag for
some time

A tooltip is shown The flag is not sufficiently self-
descriptive, and the user requires some
help

Do nothing, change
flagged text manually1

The flagged text is changed The user accepts the flag, but none of
the suggestions are considered suitable,
or there are none

Do nothing, don’t
change flagged text2

The flagged text is
unchanged

The user passively ignores this
occurrence of the flag

Table 2: User actions in the ACCEPT plug-in and collected feedback

1
Note: Whether the user changed the flagged text is detected heuristically by examining how the text looked like before

and after the session.
2
See note above.

6

4 Analysing the Feedback
For the flag feedback collected by the Acrolinx server in its database, we previously had developed a

feedback processing tool pipeline, which is summarised below. For the usage information recorded

by the ACCEPT pre-editing plug-in, no such aggregator exists. To simplify the task, we decided to

automatically convert the usage information from the ACCEPT API into the format that the Acrolinx

server uses for logging the flag feedback, such that it can be fed into the same feedback processing

pipeline.

4.1 Converting ACCEPT Usage Information into Acrolinx Flag Feedback
We wrote a Python script that converts the usage information into flag feedback. The conversion is

not exact, since some user actions can be performed in the ACCEPT plug-in but not in the Acrolinx

plug-in, and vice versa. Most notably, a user cannot ignore an entire rule in the Acrolinx plug-in for all

following sessions, but only ignore all similar flags for the current check session. Nevertheless, we

treated the “ignore rule” action into an “ignore all flags in document” action. A human reviewer of

the final feedback aggregation results should therefore keep in mind that the “ignore all flags in

document” action actually means something stronger when it came from the ACCEPT plug-in

originally, namely “ignore all flags of this rule now and in the future”.

Conversely, displaying a tooltip in the ACCEPT plug-in is treated as clicking on “Help” in the Acrolinx

plug-in, although it is a more lightweight form of obtaining help. One should therefore not give it the

same importance as when reviewing feedback given via the Acrolinx plug-in.

Finally, the ACCEPT plug-in does not record some information that the Acrolinx plug-ins do. Most

importantly, the time spent in the context menu is not recorded, so that any information in the

aggregation result based on the required time should be disregarded.

4.2 Flag Feedback Pipeline
To analyse the flag feedback, we relied on a previously developed tool pipeline [1]. This pipeline was

developed in the KNIME data mining tool [2]. The first part of the pipeline loads and cleans the flag

feedback data, and transforms it into a form suitable for the main analysis.

This main analysis consists of two aspects:

- analysing the feedback by calculating flag metrics, and summarizing and visualizing the

results for manual inspection

- applying machine learning algorithm to automatically estimate the precision of flags and

suggestions based on various features.

4.3 Flag Metrics
The main goal of the feedback processing tool is to calculate the following metrics for each Acrolinx

rule:

- Precision of rule flags and their suggestions

This metric is calculated from the actions “select suggestion”, “edit flag”, “ignore flag”, and

“ignore all flags”. Note that we cannot calculate the recall, since the user cannot report false

negatives by telling where a missing flag should go.

7

- Attention for rule flags

This metric takes into account how many flags have been finally resolved, either by changing

the text in some way or by keeping it on purpose.

- Intuition of rule flags

This metric reflects how easy it was for the user to act on a rule by taking into account the
time spent on a flag, whether rule help was requested, whether the user selected a
batch-edit action, and various other features.

These metrics, along with various other statistics, are exported into an HTML-based format that can

be displayed in a web browser. There is an overview page (see Figure 2) that shows the aggregated

results of all rules and highlights potential problems. For each rule, there is a details page that gives

in-depth information on the collected feedback, and also lists all raw feedback data points (see

Figure 3). A rule developer can thus easily find potential performance issues for each rule, verify the

validity of the feedback, and get insights as to how best to change the rule.

Figure 2: Exported rule metrics (overview page)

8

Figure 3: Exported rule metrics (rule details page)

9

4.4 Machine-Learning Correct Flags
While the exported feedback aggregation result is a helpful tool for manual evaluation, a rule

developer still needs to determine when a rule produces incorrect flags. Another goal of the tool is to

automate this work, too.

For this purpose, the tool creates a decision tree classifier to predict the user’s precision feedback,

that is, whether a flag is considered correct or not. The classifier is trained on a number of extracted

features, including but not limited to:

- the marked text, as well as the word and character before and after it,

- the length of the marked text (number of words and characters),

- the length of the sentence it occurs in, and of the previous and following sentence,

- whether the marked text looks like a URL, a path or a formula.

The decision tree classifier shows the most decisive features for a flag to be considered correct or

not. For example, such a classifier may report that flags of the “add missing space” rule are almost

always wrong if the flag is immediately followed by a period, or similar.

5 Adapting the Application of Rules
Taking into account the feedback collected using the tools described above, the pre-editing rule sets

can be adjusted such that wrong flags are eliminated, more suggestions are presented that

correspond to the user edits, and the overall relevance of flags and suggestions increases.

There are two main ways to adapt how pre-editing rules are applied. First, users can influence the

rule application themselves to a certain extent by choosing to ignore a rule, or by choosing to learn a

word. Ignored rules are not shown to the user subsequently, and learned words are not marked as

spelling issues. This provides a quick and easy solution for the user to adapt the editing assistance to

their preferences.

The other way is for a rule developer to manually make changes to the rules, which then typically

apply to all members of a community. The metrics and the decision tree calculated by the tool

presented in the previous section can provide valuable insights into the performance of rules, and

helps rule developers to make informed decisions on how to change existing rules, and where to

focus.

Changing a rule based on feedback always bears the risk of breaking it for other situations or

linguistic patterns that “used to work” according to other (positive) feedback given by users

previously. For this reason, the pipeline presented in the previous section can also export the

feedback data as regression tests. For example, for a flag considered “good” by users, these tests

expect that the flag continues to occur in the given sentence in the future; for a flag rejected by

users, the test expects the flag to not appear in the given sentence.

These tests are executed by an Acrolinx rule testing framework, which records how many of these

tests succeed or fail. The testing framework in turn can be integrated into a Continuous Integration

platform such as Jenkins [3], which executes the tests automatically whenever changes to the rules

are made. This mechanism thus measures over time to what extent rule adaptation actually

addresses the entire given user feedback, and thus ensure the quality of the rules.

10

6 Conclusion
We have achieved the objective of developing a method for continuously analysing the user

behaviour, to collect implicit feedback from the community, and to adapt the rules accordingly.

While the feedback aggregation pipeline had been developed outside of ACCEPT, we have developed

a connecting script that automatically converts the usage data from the portal into a format suitable

for the feedback aggregation pipeline, thus leveraging the helpful aggregation method for the

ACCEPT project. As the method is not dependent on specific communities, languages or Acrolinx

rules, it can be used to analyse the impact of the rules in any community where the ACCEPT plug-in is

integrated.

We have run the tool on the collected usage data from the English Norton community for the period

January to May 2014. Moreover, we have used it to aggregate the data from pre-editing experiments

carried out by TSF translators with the Microsoft Word plug-in. Figure 2 shows the results for the

mentioned Norton community usage data. While the number of actual feedback points is not always

representative yet for each rule, it already gives us some valuable insights. For example, the English

“sentence too long” rule is frequently ignored by users, while the spelling flags are usually correct

and provide good suggestions. Final details on rule adoption will be presented in Deliverable

D 9.2.4: Survey of evaluation results.

References

[1] Ralf Kühnlein:
Nutzerverhalten-basierte Optimierung einer linguistischen KI
Diploma Thesis, Freie Universität, Berlin, 2013.

[2] KNIME, the Konstanz Information Miner. Retrieved 13/06/2014, from http://www.knime.org/.

[3] Jenkins Continuous Integration. Retrieved 13/06/2014, from http://jenkins-ci.org/.

[4] Pierrette Bouillon, Liliana Gaspar, Johanna Gerlach, Victoria Porro and Johann Roturier:
Pre-editing by Forum Users: a Case Study
In Workshop on Controlled Natural Language simplifying language use (CNL), Reykjavik, Ireland,
2014.

