
1

SEVENTH FRAMEWORK PROGRAMME

THEME ICT-2011.4.2(a)

Language Technologies

ACCEPT
Automated Community Content Editing PorTal

www.accept-project.eu

Starting date of the project: 1 January 2012

Overall duration of the project: 36 months

Report on improved machine translation

by exploiting post-editing data

Workpackage n° 4 Name: Improving SMT

Deliverable n° 4.3 Name: Report on improved machine translation

by exploiting post-editing data

Due date: 31 December 2014 Submission date: 19 December 2014

Dissemination level: PU

Organisation name of lead contractor for this deliverable: University of Edinburgh

Author(s): Ulrich Germann, Barry Haddow

Internal reviewer(s): Manny Rayner

Proofreading: Violeta Seretan

Copyediting: Barry Haddow, Violeta Seretan

The research leading to these results has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013) under grant
agreement n° 288769.

Contents

1 Overview 3

2 Dynamically Updating SMT Systems 3

3 Learning from Post-edits 4
3.1 Corpus . 4
3.2 Analysis of Post-Edits . 5
3.3 Automatic Post-Editing . 7

4 Conclusion 12

1

Seretan
Typewritten Text

Seretan
Typewritten Text

Seretan
Rectangle

Exploitation of Post-Editing Data

1 Overview

This document summarises the research done within the ACCEPT project in Task 4.4:
Exploitation of Usage Data of the Improving SMT work package.

The aim of this work was to examine ways of improving an SMT system during
post-editing. The idea is that we start with a baseline system, which proposes translations
to the user. The user corrects those translations, submitting the corrected version back
to the system. The system should then be able to use the corrected version to improve
future translations, especially by avoiding making the same mistakes again.

We developed a general mechanism for exploiting this post-editing data, by dynam-
ically updating the phrase table. This is described in Section 2 where we explain how
phrases can be extracted on-the-fly from an aligned corpus, instead of using a batch ex-
traction process. This means that the system can be quickly updated while it is still
running, without waiting for the hours or days normally required to batch train an SMT
system. As an application of this update mechanism, we show in Section 3.3 how an
automatic post-editor (APE) can be built so that it learns from actual post-edits. We
test this APE system on a small amount of post-editing data collecting during the AC-
CEPT project, showing that it can make measurable improvements to the underlying
SMT system.

2 Dynamically Updating SMT Systems1

Conventional MT systems are fairly static in nature, as the underlying models are ex-
pensive to build, train, and update. This often restricts update cycles to, say, once per
day (over-night), and precludes updating the knowledge base immediately after additional
information has become available. In an interactive scenario such as integration of MT
into a translation or post-editing work-flow, this is a major drawback: we would like the
system to learn from post-edits as soon as possible. One of the bottlenecks is the con-
struction of the phrase table. The conventional method of construction consists of a batch
processing pipeline involving (1) word-alignment of the parallel data; (2) phrase pair ex-
traction; (3) phrase pair scoring based on global statistics over the collection of phrase
pairs (e.g., smoothed conditional phrase-level translation probabilities in both translation
directions); and finally (4) storing them in a file or other data structure. This process can
take hours, even days for large amounts of training data.

An alternative to the conventional pipeline is to collect and score phrase table entries
on the fly by sampling available information sources directly rather than pre-computing
a large range of conceivable requests (Callison-Burch et al., 2005). This requires indexing
of all available training data, so that source phrase occurrences can be found quickly in
the available parallel data.

Suffix arrays (Manber and Myers, 1990) are a space-efficient way of indexing large
corpora with reasonably fast retrieval times. In the context of natural text corpora, a
suffix array is an array of all word positions in the corpus, sorted in lexicographic order

1This section overlaps in large parts with the corresponding section in Deliverable 1.2 of the MateCat
project. Dynamic phrase tables for Moses were developed with support from the European Union’s 7th

Framework Programme under grant agreements 287688 (MateCat), 287576 (CasMaCat), and 288769
(ACCEPT).

3

of the word sequence starting at the respective position (hence the name suffix array).
The computational cost for building a suffix array for an initial corpus is O(n1 log n1),
where n1 is the number of tokens in the corpus; the computational cost for finding all
occurrences of a given text span is O(log n1), and the cost of adding material of length
n2 to an indexed corpus is O((n2 log n2) + n1), i.e. the cost of indexing the additional
material and the linear cost of merge-sorting the two indices.

Even though suffix arrays have been used in hierarchical phrase-based translation for
years (Lopez, 2007; Schwartz and Callison-Burch, 2010), adoption into the Moses toolkit
had been slow, due to concerns about translation speed and translation quality: speed,
because sampling is often perceived as being slow, and translation quality, because certain
global information that is used to compute phrase table scores in the conventional setting
is not available when sampling, e.g. global count information used for Good-Turing or
modified Kneser-Ney smoothing of phrase-level conditional translation probabilities.

With the support from several EU projects (MateCat (grant agreement No. 287688),
CasMaCat (grant agreement No. 287576), and ACCEPT (grant agreement No. 288769)),
we implemented in Moses a dynamic phrase table that uses this technology effectively.
We were able to close the quality gap that resulted from smoothing in conventional phrase
tables with smoothing techniques not available in the sampling scenario. Our dynamic
phrase tables not only achieve the same level of performance in the static scenario, but
are also considerably faster than prior phrase table implementations in Moses. Details
can be found in Germann (2014), included in appendix.

3 Learning from Post-edits

3.1 Corpus

The corpus used for these experiments was produced in the process of creating an extra
French-English test set for the Symantec data. To create this test set, we selected 1000
forum posts from the French section of the Symantec forums and employed two translators
to translate them into English. The translators used the post-editing interface developed
for the Casmacat2 project. The initial translations for the post-editing were produced
using an SMT system similar to the ACCEPT baseline systems (see D4.1).

The 1000 forum posts contained a total of 5377 French sentences, so from each one we
obtained two different human translations into English. For 10% of these we did not show
the translators the SMT output, in order to provide a comparison of post-editing with
translation “from scratch”. We also allowed the translators to enter the string “! SAME !”,
if they believed that they had seen a sentence before in the corpus. After excluding the
sentences translated from scratch, those marked as “! SAME !”, plus a small number
where the SMT shown to each of the translators was different3 and sentences where either
one of the translators produced an empty translation, the resulting post-edited corpus
contains 4666 tuples, each consisting of a source sentence, a machine-translated version,
and two separate post-edited versions. The text was then tokenised using the Moses
tokeniser. We refer to this corpus as the Edinburgh Post-editing Corpus (edinpe).

2www.casmacat.eu
3The translation system used a dynamic suffix array with sampling, so was not deterministic.

4

3.2 Analysis of Post-Edits

We first investigated the nature of the edits that the translators made, highlighting the
differences between the two translators. In Table 1 we report the bleu and ter scores
of the MT sentences in edinpe, with respect to each of the post-edited versions.

Translator A Translator B
bleu 70.19 52.76
ter 0.1396 0.2231

Table 1: Measures of similarity of raw MT versus the post-edited versions. Note that
higher bleu indicates greater similarity, whereas the opposite is true for ter.

From Table 1 it is notable that the translators, especially Translator A, do not make
many changes to the output. Typical bleu scores for comparing this MT system against
references created from scratch in this domain are in the 40s. We also notice that there
is a marked difference between the two translators. In fact, the bleu score between
translators (taking translator A as the reference) is 56.43, indicating that the agreement
between translators is no better in many cases than the agreement between the translators
and the machine translation.

In order to investigate the edits made by the translators, we used ter to align both of
the post-edited references to the raw MT. From these alignments we are able to extract
substitutions (where two different words are aligned), as well as insertions and deletions
(where tokens are left unaligned).

Considering the comparison of raw MT output with the post-edited versions, we show
in Table 2 the numbers of insertions, deletions and substitutions made by each translator.

Translator A Translator B
Inserts 2715 (32.5%) 4114 (29.1%)
Deletes 663 (7.9%) 1206 (8.5%)
Substitutions 4973 (59.5%) 8839 (62.4%)
Total 8351 14159

Table 2: Numbers of insertions, deletions and substitutions made by each translator,
according to the ter alignment.

The main difference is observed in the total number of edits, with the proportions of
the different types of edits being roughly equal between the two translators. Looking at
the ratio between the number of insertions and the number of deletions, we see that the
first translator (ratio = 4.1:1) tends to favour insertions more than the second (ratio =
3.4:1), but both tend to add a lot more text than they remove.

To better understand the cause of these edits, we examined the top 10 substitutions,
insertions and deletions made by each of them. The insertions and deletions are listed in
Table 3, whilst the substitutions are listed in Table 4.

Looking at Table 3 firstly, we notice that the most common insertions and deletions
roughly line up with the most common words. That probably is not too much of a surprise
– these words are difficult to get right, and of course are the most common words. The

5

Insertions Deletions
Translator A Translator B Translator A Translator B

to (164) . (386) of (43) ! (95)
the (152) the (212) the (30) the (66)

it (138) to (189) is (13) of (65)
, (77) , (168) , (12) to (33)
. (73) it (163) has (12) is (28)

of (56) a (92) you (11) have (25)
a (55) ’ (80) to (11) that (24)

on (53) for (66) a (10) , (22)
is (44) on (66) . (8) it (15)

you (44) of (63) > (8) ? (15)
2715 4114 663 1206

Table 3: Most common insertions and deletions for each annotator, with absolute counts
in brackets

main differences between the two translators seem to be in the treatment of punctuation
and contractions, and closer inspection will suggest that these are stylistic changes.

The most common insertions of translator B are full stops, proportionally much more
common than for translator A. Also, translator B has deleted 95 exclamation marks in
contrast to translator A, who did not delete any. Many of the exclamation marks deleted
by Translator B occur in a few sentences with multiple exclamation marks, a phenomenon
which occurs in this kind of informal forum data. Furthermore, Translator B often added
full stops even when they did not occur in the source, as in Example 1.

(1a) Source: Merci à tous

(1b) MT: Thank you to all

(1c) Trans 1: Thank you all

(1d) Trans 2: Thank you to all.

Substitutions
Translator A Translator B

tone→your (27) not→’t (133)
norton→Norton (25) is→’s (49)
the→it (20) norton→Norton (46)
as→have (18) do→don (32)
a→an (17) does→doesn (25)
not→’t (17) tone→your (24)
has→to (15) has→to (21)
of→to (12) as→have (20)
are→is (11) of→from (20)
parsing→scan (11) ’→” (20)

Table 4: Most common substitutions for each annotator, with absolute counts in brackets

Examining the common substitutions in Table 4 shows that capitalisation of “norton”
is a frequent problem, as is the mistranslation of the French “ton” (a domain issue caused

6

by the lack for informal text in the training data). What is different about the two
translators is their handling of contractions. Translator B obviously prefers contracted
forms in English (e.g. “can’t” rather than “can not”) whereas Translator A has corrected
less of these. For example in 2, Translator B makes the change, but Translator A leaves
the verb uncontracted, as in the raw MT.

(2a) Source: Ca ne semble pas d’etre le cas pour moi.

(2b) MT: CA does not seem to be the case for me.

(2c) Trans 1: That does not seem to be the case for me.

(2d) Trans 2: That doesn’t seem to be the case for me.

In Tables 5 and 6 we focus on the actual disagreements between the two translators,
counting the occasions where one translator inserts, deletes, or substitutes a token, but
the other does not. This confirms that contractions and punctuation play a significant role
in the difference between the two translators. We also see that the translators have some
differences of opinion about capitalisation. This is an area where automatic processing
could perhaps help to create to standardise between translators, and also to allow them
to concentrate on more “interesting” corrections.

Insertions Deletions
Translator A Translator B Translator A Translator B

the (92) . (343) of (35) ! (95)
to (90) the (147) the (21) the (57)
it (83) , (142) has (11) of (57)
, (53) to (115) to (9) to (31)

of (43) it (109) you (9) that (23)
a (42) a (79) a (9) have (23)

on (40) ’s (67) , (9) is (23)
is (32) on (54) is (8) , (20)

have (31) of (50) > (8) ? (14)
in (28) ’t (50) . (7) it (14)

Table 5: Translator disagreements: Top 10 insertions and deletions made by one trans-
lator, but not the other. In other words, the insertions/deletions in the “Translator A”
column were made by A but not B, and vice-versa for the “Translator B” column.

3.3 Automatic Post-Editing

We used the corpus from Section 3.1 and the dynamic suffix array phrase table from
Section 2 to investigate building an Automatic Post-Editor (APE) using phrase-based
MT.

The idea of our APE is that we create a phrase-based decoder to convert raw MT
output (from the baseline system) into post-edited MT. This decoder is learnt from the
user edits, which are fed back into the system after every sentence that the translator
post-edits. The theory is that the APE system can learn common corrections from the
translator, and apply them to future sentences, thereby improving the MT system and
avoiding annoying the translator by showing them the same errors over and over again.

7

Substitutions
Translator A Translator B

norton→Norton (20) not→’t (120)
the→it (16) is→’s (46)
a→an (12) norton→Norton (41)
of→to (10) do→don (30)
by→through (9) does→doesn (23)
am→have (9) pc→PC (17)
internet→Internet (8) this→the (17)
parsing→scan (8) of→from (15)
windows→Windows (7) is→has (15)
response→answer (7) of→to (14)

Table 6: Translator disagreements: Top 10 substitutions made by one translator, but not
the other

The operation of our APE is as follows. The system contains two phrase tables – a
foreground table and a background table – and initially the background table contains
translations of words to themselves, whilst the foreground table is empty. The background
table is static, but the foreground table is updated as the Translator edits. Then the first
sentence is edited by the translator, who submits the edited version to the system. The
APE creates a ter alignment between the machine translated sentence, and the edited
version, then extracts phrases from this aligned sentence pair using the usual phrase-based
MT heuristics. These extracted phrases are added to the foreground phrase table.

For the second and subsequent sentences, the output of the baseline system is passed
to the APE before it is shown to the translator. The APE is really a phrase-based
MT system, which uses the foreground and background phrase tables, plus the language
model from the baseline system, to translate the output of the baseline system into an
automatically edited version.

The implementation of the APE uses the dynamic suffix array phrase table (as de-
scribed in Section 2) and the Moses server. At start-up time, the Moses server just has
the background table, but after each sentence is edited by the translator, the result of this
editing is passed back to the server and added to the foreground table. Since both tables
are implemented with the suffix array, phrases are extracted on-the-fly, if and when they
are need to post-process subsequent MT output.

In our experiments with this APE system we used the actual post-edits described in
3.1, as opposed to the simulated post-edits (SPE) typically used in previous work, such as
Simard and Foster (2013). We believe that this is much more realistic, as SPE typically
involves treating a from-scratch translation as if it were produced by post-editing. Never-
theless, our experiments cannot be considered as a full test of APE, since the translators
did not use the APE system when they were editing. That is to say, all the MT output
that they saw came from the baseline system.

We now describe our experimental setup. We took the corpus of 4666 tuples from
Section 3.1, and treated each translator’s portion separately. This means that we ended
up with two corpora (edinpe.0 and edinpe.1) each consisting of a (source, MT, human
edited MT) tuple. We then split each of these two corpora into three sections (A, B and
C) of equal size, by dividing the corpora sequentually. Section B was used for tuning the

8

parameters of the APE using the standard SMT batch-tuning paradigm – specifically we
used batch mira (Cherry and Foster, 2012). Section A was optionally used for seeding
the foreground corpus, i.e. providing an initial set of post-edits to the APE, and section
C for testing the resulting system.

In Table 7 we report the bleu and ter scores of the baseline MT and the APE-
augmented MT, as compared to the human post-edited translation, which we treat as
the reference. The table shows that the APE makes little or no difference to the overall
evaluation scores. There is a slight preference for the “seeded” version as opposed to
the “unseeded” version, but the score differences are too small to conclude a real effect.
We examined the change of sentence bleu over time, to see if scores improved as more
post-edited output was seen, but there was no discernible pattern.

Translator A Translator B
bleu ter bleu ter

Baseline 78.21 0.0952 51.13 0.2354
APE (noseed) 77.99 0.0960 51.15 0.2352
APE (seed) 78.19 0.0957 51.19 0.2360

Table 7: Comparison of baseline and APE systems, taking the human post-edited output
as a reference. “seed” indicates whether the APE system was seeded with an initial set
of post-edits.

A casual inspection of the output of the APE system, however, suggested that it was
having a positive effect on translation. In order to investigate this further, we decided to
do a human evaluation on all the sentences that were affected by the APE system. In
fact, there were not that many sentences changed – for Translator A, only 66 (4.2%) of
the test sentences were changed, whilst the corresponding figure for Translator B was 202
(13.0%). The APE system affected much more sentences for the second translator, since
that translator made much more edits.

The human evaluation of the APE system was performed by a single evaluator, a
bilingual French Canadian, who works in machine translation research. The evaluator
inspected triples of <source, MT output, APE-augmented MT> and marked either “first
better”, “second better” or “equal”. We used the output of the seeded APE for the human
evaluation. The results, shown in Table 8, are quite encouraging for the APE system.

Translator A Translator B
Base better 11 (16.7%) 24 (11.9%)
APE better 47 (71.2%) 133 (65.8%)
Same 8 (12.1%) 45 (22.3%)

Table 8: Human evaluation of the APE system, comparing it to the baseline (raw MT).

For both translators, the APE system either improved or did not degrade the output
in over 80% of the sentences that it changed. In the rest of this section, we examine some
examples, good and bad, of the APE system at work.

The baseline MT system sometimes struggled with the poor French of the forum posts,
and in particular the missing accents in crucial places. These errors were fixed by the
Translators, but also were picked up by the APE system. We illustrate this in Example

9

3, the source sentence is missing the accent on “Ça”, causing the baseline MT to fail, but
the APE system fixes it.

(3a) Source: Ca ne marche pas au boulot avec symantec end point . . .

(3b) Baseline: CA does not work the job with symantec end point . . .

(3c) APE: That does not work the job with symantec end point . . .

(3d) Reference: It does not work at my workplace with symantec end point . . .

The APE system was also able to learn domain-specific terms, which were missing
from the baseline system, as in Example 4. This could potentially save the editor the
frustration at having to constantly correct the same errors.

(4a) Source: plantage de Norton lors de Liveupdate et autres

(4b) Baseline: Norton plantage when Liveupdate and others

(4c) APE: Norton crash when Liveupdate and others

(4d) Reference: Norton crashing when performing Live update and others

The baseline system often has poor treatment of informal French pronouns and verb
forms, creating either out-of-vocabulary words or translations that are quite wrong as in
Example 5. Since such examples occur multiple times, the APE is able to learn corrections.

(5a) Source: Tu ne parles pas de ton navigateur

(5b) Baseline: You do not speak of tone browser

(5c) APE: You do not speak of your browser

(5d) Reference: You’re not speaking of your browser

In most cases, the APE system only updates single words, but sometimes it will alter
a whole sentence. In Example 6 we see a short sentence which may be quite frequent in
forum data, but translating it literally (as in the baseline system) gives poor results.

(6a) Source: Est-ce que le problème persiste?

(6b) Baseline: Is the problem persists?

(6c) APE: Do you still have the problem?

(6d) Reference: Do you still have the same problem.

The APE system is exposed to the limitations of the alignment and phrase extraction
algorithms though, for example in 7 where it makes the MT output worse. This correction
was learnt from an earlier example where the translator edited “I seeks” to read “I’m
looking for”, however a poor alignment meant that the phrase pair “I seeks → I’m” was
extracted.

(7a) Source: Je cherche un pas à pas pour configurer . . .

(7b) Baseline: I seeks a step by step to configure . . .

(7c) APE: I’m a step by step to configure . . .

(7d) Reference: I’m looking for step by step instructions on how to configure . . .

10

One sentence that was corrected multiple times by the APE system was the one
shown in Example 8. This sentence with its associated correction occurred 12 times in
the corpus, and each time, the APE system was penalised by bleu for the mismatch with
the reference. The evaluator, however, preferred the APE version of this sentence. In
order for the APE system to have learned this correction, the translator must at some
point have inserted the “have a” into the MT output, however in subsequent cases they
accepted the MT output unchanged. The APE system learnt the original correction, then
applied it to all subsequent occurrences.

(8a) Source: Merci et bonne journée!

(8b) Baseline: Thank you and good day!

(8c) APE: Thank you and have a good day!

(8d) Reference: Thank you and good day!

The update in Example 8 does not affect the meaning of the text, assuming one is only
interested in using translations of forum text to solve problems with Symantec software.
However it could be argued that the APE output provides a more polite, and perhaps
more accurate (as opposed to literal) rendering of the original.

The experiments described in this section show that an APE system based on phrase-
based MT could be useful in learning from edits supplied by a translator, and re-applying
them automatically. Whilst the degree of generalisation that the APE system gets from
a small training set (compared to those usually employed in PBMT) may not help with
complicated rewording, it could with simple lexical errors. Saving the post editor from
repeatedly editing these kinds of errors could make for a less frustrating user experience
for the translator.

One of the limitations of these experiments, though, is that we are not running them
in a live system. The data we use is at least gathered during actual (as opposed to
simulated) post-editing, but the translators only have access to the baseline MT system
output during editing. If the translators edited the output of the APE system, then these
edits could enable us to learn whether the translators accepted or rejected the output
of the APE system. It could also potentially increase the quality of the post-editing by
dealing with the mundane errors in the MT output before it is viewed by translators.

It would also interesting to determine how APE interacts with the other method of
feeding the user edits back to the MT system; inserting the edited texts as additional
training data. Like APE, this type of system update is also enabled by dynamic suffix
array based phrase tables, but unlike APE it modifies the underlying MT system, instead
of treating it as a black box, and makes use of the source text. Only experimentation
will determine whether the two update methods provide overlapping, or complementary
sources of information.

11

4 Conclusion

We have shown how an SMT system can incorporate user edits by replacing the usual
batch training paradigm with a phrase table that can be updated dynamically. Initial
experiments on a small amount of post-editing data show promising results, however more
experimentation within live systems would be necessary in order to find the best methods
of incorporating user updates.

References

Callison-Burch, C., C. Bannard, and J. Schroeder (2005). Scaling phrase-based statistical
machine translation to larger corpora and longer phrases. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pp. 255–262. Association
for Computational Linguistics.

Cherry, C. and G. Foster (2012). Batch Tuning Strategies for Statistical Machine Trans-
lation. In Proceedings of NAACL.

Germann, U. (2014, October). Dynamic Phrase Tables for Machine Translation in an
Interactive Post-editing Scenario. In AMTA 2014 Workshop on Interactive and Adaptive
Machine Translation, Vancouver, BC, Canada, pp. 20–31. Association for Machine
Translation in the Americas.

Lopez, A. (2007). Hierarchical phrase-based translation with suffix arrays. In EMNLP-
CoNLL, pp. 976–985. ACL.

Manber, U. and G. Myers (1990). Suffix arrays: A new method for on-line string searches.
In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’90, Philadelphia, PA, USA, pp. 319–327. Society for Industrial and Applied
Mathematics.

Schwartz, L. and C. Callison-Burch (2010). Hierarchical Phrase-Based Grammar Extrac-
tion in Joshua: Suffix Arrays and Prefix Tree. The Prague Bulletin of Mathematical
Linguistics 93, 157–166.

Simard, M. and G. Foster (2013). Pepr: Post-edit propagation using phrase-based statis-
tical machine translation. In Proceedings of MT Summit.

12

Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages 20–31
AMTA Workshop. Vancouver, Canada. September 22, 2014

Dynamic Phrase Tables for Machine Translation
in an Interactive Post-editing Scenario

Ulrich Germann
University of Edinburgh
ugermann@inf.ed.ac.uk

Abstract

This paper presents a phrase table implementation for the Moses system that computes phrase
table entries for phrase-based statistical machine translation (PBSMT) on demand by sampling
an indexed bitext. While this approach has been used for years in hierarchical phrase-based
translation, the PBSMT community has been slow to adopt this paradigm, due to concerns
that this would be slow and lead to lower translation quality. The experiments conducted in
the course of this work provide evidence to the contrary: without loss in translation quality,
the sampling phrase table ranks second out of four in terms of speed, being slightly slower
than hash table look-up (Junczys-Dowmunt, 2012) and considerably faster than current im-
plementations of the approach suggested by Zens and Ney (2007). In addition, the underlying
parallel corpus can be updated in real time, so that professionally produced translations can
be used to improve the quality of the machine translation engine immediately.

1 Introduction

In recent years, there has been an increasing interest in integrating machine translation
(MT) into the professional translator’s work flow. With translation memories (TM)
firmly established as a productivity tool in the translation industry, it is a conceptually
obvious extension of this paradigm to include machine translation engines as virtual
TMs in the set-up.

One major obstacle to this integration is the static nature of most machine transla-
tion systems that are currently available for use in production. They cannot adapt easily
to feedback from the post-editor, or integrate new data into their knowledge base on
short notice. In other words, they do not learn interactively from corrections to their
output. Their models and knowledge bases were originally developed and designed for
a batch translation scenario, where resources are first built and then used to translate in
a fully automatic fashion without further intervention. Training the model parameters
is still a slow and computationally very expensive process.

20

This paper presents dynamic phrase tables as an alternative, implemented within the
open-source statistical machine translation (SMT) system Moses (Koehn et al., 2007).1

Rather than simply looking up pre-computed entries from a database, they construct
their entries on the fly by sampling word-aligned parallel data. The underlying cor-
pus can be amended dynamically with low latency, for example by feeding post-edited
output back to the translation server. New additions to the corpus can be exploited for
future translations immediately.

While the underlying mechanisms are not new (cf. Callison-Burch et al., 2005;
Lopez, 2007), the work reported here eliminates two major concerns about the use
of bitext sampling for phrase table entry construction on demand: translation speed
and translation quality. The experimental evaluation shows that in terms of speed,
the sampling phrase table clearly outperforms current implementations of the work by
Zens and Ney (2007). It comes close to the translation speed achievable with the hash-
based compact phrase table implementation of Junczys-Dowmunt (2012). It should
be noted that if translation speed is a serious concern, it is easy to pre-compute and
store or cache phrase table entries for frequently occurring phrases. In terms of transla-
tion quality, the performance of the sampling phrase table is on par with conventional
phrase tables for phrase-based SMT. Among the phrase table implementations that were
evaluated for this work, the sampling phrase table is the only one that allows dynamic
updates to its knowledge base in real time.

2 Conventional phrase tables vs. bitext sampling

2.1 Background

Most machine translation systems used in production today follow the paradigm of
phrase-based statistical machine translation (PBSMT; Koehn et al., 2003). PBSMT
systems typically rely on three distinct models: a language model that judges target-
language fluency of a proposed translation; a translation model that gauges the quality
of the elementary translation pairs that the final translation is composed of; and a dis-
tortion model that models changes in word order between source text and translation.

The units of translation in PBSMT are contiguous sequences of words in the source
text (“phrases”) that are translated into contiguous sequences of words on the target
side. Producing the translation hypothesis left-to-right in the target language, the trans-
lation algorithm selects non-overlapping phrases in arbitrary order from the source and
concatenates the corresponding translations (i.e., target phrases) to produce a translation
hypothesis. Jumps between the source phrases are modelled by the distortion model.

Translation options for source phrases are conventionally stored in a pre-computed
table, which is called the phrase table. Phrase translation scores are computed via
a (log-)linear model over a number of features values associated with the phrase pair
〈s, t〉 in question. In the typical set-up, phrase table entries are evaluated by four feature
1 The code has been added to the Moses master branch at https://github.com/moses-smt/mosesdecoder.

21

functions. In the formulas below, As,t is the phrase-internal word alignment between s
and t. The four feature functions are as follows.

• the conditional phrase-level ‘forward‘ translation probability p (t | s)

• the conditional phrase-level ‘backward‘ translation probability p (s | t)

• the joint ‘lexical forward‘ probability of all target words, given the source phrase
(and possibly a word alignment between the two phrases):

∏|t|
k=0 p (tk | s,As,t).

• the corresponding joint ‘lexical backward‘ probability
∏|s|

k=0 p (sk | t,As,t).

In order to achieve better translations, phrase-level probabilities are typically smoothed
by Good-Turing or Kneser-Ney smoothing (Foster et al., 2006). The underlying counts
and smoothing parameters are computed based on a complete list of phrase pairs ex-
tracted from the word-aligned parallel training corpus.

2.2 Bitext sampling

Except for toy examples, pre-computed phrase tables are typically very large, with the
exact size of course depending on the maximum phrase length chosen and the size of
the underlying corpus. The phrase table used for the timing experiments reported in
Section 3.2, for example, consists of over 90 million distinct pairs of phrases of up to 7
words extracted from a moderately sized parallel corpus of fewer than 2 million parallel
sentences of German-English text.

The large sizes of phrase tables make it impractical to fully load them into memory
at translation time. Fully loaded into memory in the Moses decoder, the phrase table of
the aforementioned system requires well over 100 GB of RAM and takes far beyond an
hour to load. Therefore, phrase tables are usually converted to a disk-based representa-
tion, with phrase table entries retrieved from disk when needed. There are several such
representations (Zens and Ney, 2007; Germann et al., 2009; Junczys-Dowmunt, 2012),
two of which (Zens and Ney, 2007; Junczys-Dowmunt, 2012) have been integrated into
the Moses system.

As an alternative to pre-computed phrase tables, Callison-Burch et al. (2005) sug-
gested to compute phrase table entries on the fly at runtime by extracting and scor-
ing a sample of source phrase occurrences and their corresponding translations from
a pre-indexed bitext. For indexing, they use suffix arrays (Manber and Myers, 1990).
A suffix array is an array of all token positions in a given linear sequence of tokens
(e.g., a text or a DNA sequence), sorted in lexicographic order of the sub-sequence
of tokens starting at the respective position. The use of suffix-array-based bitext sam-
pling in the context of MT has been explored at length by Lopez (2007) as well as
Schwartz and Callison-Burch (2010), especially with respect to Hierarchical Phrase-
based Translation (HPBSMT; Chiang, 2005, 2007).

22

A great advantage of the suffix-array-based approach is that it is relatively cheap and
easy to augment the underlying corpus. To add a pair of sentences to the parallel corpus,
all we need to do is to construct a suffix array for the added material (O(n log n), where
n is the number of tokens in the added material), and then merge-sort the original suffix
array (of length m) with the new suffix array (O(n+m)).

While corpus sampling is common practice in other branches of MT research (es-
pecially HPBSMT, due to the prohibitive size of pre-computed, general-purpose, wide-
coverage rule bases), adoption in the PBSMT community has been slow, apparently2

due to concerns about translation speed and quality.

In the following, I intend to dispel these concerns by presenting experimental re-
sults obtained with an implementation of suffix-array-based phrase tables that sample
the underlying bitext at run time, yet outperform existing disk-based implementations
of conventional phrase tables by a wide margin in terms of speed (despite the greater
computational effort), without any loss in translation quality.

Much of the speed benefit is related to RAM vs. disk access. Word-aligned parallel
corpora are much more compact than fully expanded phrase tables, so we can afford
to keep more of the information in memory, benefiting from access times that can be
several orders of magnitude faster than random access to data stored on disk (Jacobs,
2009).

Moreover, the data structures are designed to be mapped directly into memory,
so that we can rely on the system’s virtual memory manager to transfer the data effi-
ciently into memory when needed. This is much faster than regular file access. Two
of the four implementations evaluated here store all the data on disk by default and
load them on demand (PhraseDictionaryBinary, PhraseDictionaryOnDisk); the other
two (PhraseDictionaryCompact and PhraseDictionaryBitextSampling (this work)) use
memory-mapped files to ensure the fastest transfer possible between disk and mem-
ory. I attribute most of the speed benefits to these implementational choices (see also
Sec. 3.2).

Last but not least, one can alleviate the impact of the computational overhead on
overall translation time by caching frequently occurring entries, so that they must be
computed only once, and perform phrase table look-up in parallel for all source phrases
in a sentence submitted for translation, subject to the number of CPUs available.

The issue of translation quality is less obvious. Despite common misconceptions,
it is not so much a matter of missing translation options due to sampling the bitext in-
stead of taking into account every single source phrase occurrence. The vast majority
of phrases occur so rarely that we can easily investigate every single occurrence. More
frequent words and phrases will often be contained in longer, rarer phrases whose in-
stances we also fully explore. And if there is a rare translation of a very frequent word
that escapes our sampling, it is highly unlikely that this translation would survive the

2 I base this statement on numerous conversations with practitioners in the field.

23

system’s hypothesis ranking process.

On the contrary, it is the rarity of most phrases that causes problems, as maximum
likelihood estimates based on low counts are less reliable — they tend to over-estimate
the true translation probability. As Foster et al. (2006) have shown, smoothing phrase-
level conditional phrase probabilities improves translation performance. My experi-
ments confirm this finding (Table 2).

Both standard methods for smoothing phrase-level translation probabilities in the
phrase table, Good-Turing and Kneser-Ney, require global information about the entire
set of phrasal translation relations contained in the parallel corpus. This information is
not available when we sample. To take the amount of evidence available into account
when estimating phrase translation probabilities, we therefore compute the lower bound
of the confidence interval3 over the true translation probability, at some confidence level
α, based on the observed counts. The more evidence is available, the narrower the
confidence interval.

Another issue is the computation of the useful backward phrase-level translation
probabilities p (source phrase | target phrase). Omitting this feature function seriously
hurts performance (see Line 5 in Table 2). One could, of course, perform a full reverse
look-up for each translation candidate to obtain the inverse translation probability. This
would increase the number of full phrase look-ups operations necessary to construct a
phrase table entry from scratch by a factor equal to the number of translation options
considered for each source phrase (although again, these look-up operations could be
cached). In practice, this is not necessary. To determine the denominator for the back-
ward phrase-level translation probability, we simply scale the number of occurrences of
each translation candidate in the bitext by the ratio of the source phrase sample size to
the total number of source phrase occurrences in the corpus. Retrieving the total num-
ber of occurrences of the translation candidate in the corpus is trivial if we also index
the target side of the corpus with a suffix array: we only need to measure the distance
between the first and the occurrence of the phrase in the suffix array. Since the suffix
array is sorted in lexicographic order of the corresponding suffixes, this distance is the
total number of phrase occurrences.

3 Experiments

Two sets of experiments were conducted to compare bitext sampling to conventional
phrase tables in terms of static performance (without updates), and a third one to asses
the benefits of dynamically updating the phrase table as interactive translation pro-
gresses. The first experiment aimed at determining the quality of translation achievable
with bitext sampling and the best parameter settings; the second focused on translation
speed and resource requirements. Training, tuning and test data for these two exper-
iments were taken from the data sets for the WMT 2014 shared translation task (cf.
Table 1). The language model was a standard 5-gram model with Kneser-Ney smooth-

3 Specifically, the Clopper-Pearson interval (Clopper and Pearson, 1934) as implemented in the Boost C++ library.

24

Table 1: Corpus statistics for the training, development and test data. All corpora were
part of the official data for the shared translation task at WMT 2014 and true-cased for
processing.

of tokens
corpus # of sentences German English

LM train Europarl-v7 2,218,201 60,502,373
News-Commentary-v9 304,174 7,676,138

TM train Europarl-v7 1,920,209 50,960,730 53,586,045
News-Commentary-v9 201,288 5,168,511 5,151,459
total after alignmenta 2,084,594 53,863,321 56,351,895

Tuning Newstest-2013 3,000 64,251 65,602
Testing Newstest-2014 3003 64,498 68,940
a Some sentence pairs were discarded during word alignment

ing; the distortion model was a simple distance-based model without lexicalisation. The
phrase table limit (i.e., the limit on the number of distinct translation hypotheses that
will be considered during translation) was set to 20; the distortion limit to 6. Sampling
was performed without replacement.

3.1 Translation Quality

Table 2 shows the the quality of translation achieved by the various system configura-
tions, as measured by the BLEU score Papineni et al. (2002). The system configura-
tions were identical except for the method used for construction and scoring of phrase
table entries.

Each system was tuned 10 times in independent tuning runs to gauge the influence
of parameter initialisation on overall performance (cf. also Clark et al., 2011). The
95% confidence interval in the second-but-last column was computed with bootstrap
resampling for the median system within the respective group.

The first four systems rely on conventional phrase tables with four feature functions as
described in Sec. 2.1: forward and backward phrase-level conditional probabilities as
well as forward and backward joint lexical translation probabilities. They differ in the
smoothing method used, except for the system in Line 3, which shows that filtering the
phrase table to include only the top 100 entries (according to the forward phrase-level
probability p(t | s)) has no effect on translation quality.

Lines 5 and below are based on bitext sampling. The poor performance in Line 5
illustrates the importance of the phrase-level backward probability. Without it, the per-
formance suffers significantly. Lines 4 and 6 show the benefits of smoothing.

The parameter α in Lines 7 to 9 is the confidence level for which the Clopper-
Pearson interval was computed. Notice the minuscule difference between lines 2/3

25

Table 2: BLEU scores with different phrase score computation methods.

method low high median mean
95% conf.
intervala

runs

1 precomp., Kneser-Ney smoothing 18.36 18.50 18.45 18.43 17.93 – 18.95 10
2 precomp., Good-Turing smoothing 18.29 18.63 18.54 18.52 18.05 – 19.05 10
3 precomp., Good-Turing smoothing, filteredb 18.43 18.61 18.53 18.53 18.04 – 19.08 10
4 precomp., no smoothing 17.86 18.12 18.07 18.05 17.58 – 18.61 10
5 max. 1000 smpl., no smoothing, no bwd. prob. 16.70 16.92 16.84 16.79 16.35 – 17.32 10
6 max. 1000 smpl., no smoothing, with bwd. prob. 17.61 17.72 17.69 17.68 17.14 – 18.22 8
7 max. 1000 smpl., α = .05, with bwd. prob.c 18.35 18.43 18.38 18.38 17.86 – 18.90 10
8 max. 1000 smpl., α = .01, with bwd. prob. 18.43 18.65 18.53 18.52 18.03 – 19.12 10
9 max. 100 smpl., α = .01, with bwd. prob. 18.40 18.55 18.46 18.46 17.94 – 19.00 10

a Confidence intervals were computed via bootstrap resampling for the median system in the group.
b Top 100 entries per source phrase selected according to p (t | s).
c The parameter α is the one-sided confidence level of the Clopper-Pearson interval for the observed counts.

and 8! By replacing plain maximum likelihood estimates with the lower bound of
the confidence interval over the respective underlying translation probability, we can
make up for the lack of global information necessary for Good-Turing or Kneser-Ney
smoothing.

3.2 Speed

Table 3 shows average translation times4 per sentence for four phrase table implemen-
tations in the Moses system. PhraseDictionaryBinary and PhraseDictionaryOnDisk
are implementations of the method described in Zens and Ney (2007). PhraseDic-
tionaryCompact (Junczys-Dowmunt, 2012) is a compressed phrase table that relies on
a perfect minimum hash for look-up. PhraseDictionaryBitextSampling is the suffix
array-based phrase table presented in this paper. Each system was run with 8 threads as
the only processes on an 8-core machine with locally mounted disks, translating 3003
sentences from the WMT 2014 test set. Prior to each run, all file system caches in RAM
were dropped.

When the pre-computed phrase tables are not filtered, the bitext sampler outper-
forms even the hash-based phrase table of Junczys-Dowmunt (2012). This is due to the
cost of ranking very long lists of translation candidates for very frequent source phrases.
Filtering the phrase table off-line to include only the 100 most likely translation candi-
dates for each phrase (based on p(t | s)) leads to a significant speed-up without impact
on translation quality (cf. Line 3 in Table 2).5 Similarly, the speed of the bitext sampler

4 The times shown were computed by dividing the total wall time of the system run by the number of sentences trans-
lated. Translations were performed in 8 parallel threads, so that the average actual translation time for a single sentence
is about 8 times the time shown. Since the bitext sampler is inherently multi-threaded, the fairest form of comparison
was to run the systems in a way that exhausts the host computer’s CPU capacity.

5 I thank M. Junczys-Dowmunt for pointing out to me that phrase tables must be filtered for optimal performance.

26

Table 3: Translation speed (wall time) with different phrase table implementations. The
implementation names correspond to Moses configuration options. Translations were
performed in multi-threaded mode with 8 parallel threads.

type implementation ave. sec./snt
static PhraseDictionaryBinary (Zens and Ney, 2007) 0.879
static PhraseDictionaryOnDisk (Zens and Ney, 2007) 0.717
static PhraseDictionaryCompact (Junczys-Dowmunt, 2012) 0.366
static PhraseDictionaryCompact (Junczys-Dowmunt, 2012), filtereda 0.214
dynamic PhraseDictionaryBitextSampling, max. 1000 samples (this work) 0.256
dynamic PhraseDictionaryBitextSampling, max. 100 samples (this work) 0.228
a max 100 entries per source phrase

can be improved by reducing the maximum number of samples considered, although
this slightly (but not significantly) reduces translation quality as measured by BLEU
(cf. Line 9 in Table 2). Phrase table filtering has no impact on the speed of the other
phrase table implementations.

3.3 Simulated Post-editing

The main goal of this work was to develop a phrase table that can incorporate user
edits of raw machine translation output into its knowledge base at runtime. Since ex-
periments involving real humans in the loop are expensive to conduct, I simulated the
process by translating sentences from an earlier post-editing field trial in English-to-
Italian translation in the legal domain. The training corpus consisted of ca. 2.5 million
sentence pairs (English: ca. 44.6 million tokens, Italian: ca. 45.9 million). Due to the
nature of such studies, the amount of data available for tuning and testing was fairly
small: 564 sentence pairs with 17,869 English and 18,528 Italian tokens for tuning,
and 472 segments with 10,829 tokens of English source text and 11,595 tokens of post-
edited translation into Italian.

Several feature functions were added for use with dynamic updates to the under-
lying bitext. In the following, “background data” means parallel data available prior
to the translation of the first sentence, and “foreground data” the parallel data that is
successively added to the parallel corpus.

• Separate vs. pooled phrase-level conditional translation probabilities (forward and
backward), i.e. the use of distinct feature functions for these probability estimates
based on counts obtained separately from the background and the foreground cor-
pus separately, or feature functions based on pooled counts from two corpora.
Because of the small size of our tuning and test sets, counts were pooled in the
experiments for this work.

• A provenance feature n
x+n , where n is the number of occurrences in the corpus

27

Table 4: Simulated post-editing vs. batch translation for English-to-Italian translation
in the legal domain. For simulated post-editing, counts were pooled.

method low high median mean 95% conf.
intervala runs

conventional, Good-Turing smoothing 29.97 30.93 30.74 30.67 29.16 – 32.37 10
sampled, no updates, no smoothing, rarity pen. 29.84 30.97 30.52 30.43 28.97 – 32.25 10
simulated post-editing, pooled counts,
no smoothing, rarity, provenance

30.63 33.05 31.96 31.88 30.19 – 33.77 10

aConfidence intervals were computed via bootstrap resampling for the median system in the group.

and x > 1 an adjustable parameter that determines the slope of the provenance
reward. The purpose of this feature is to boost the score of phrase pairs that occur
in the foreground corpus.

• A global rarity penalty x
x+n (where x and n mean the same as above) that can

penalise phrase pairs that co-occur only rarely overall.

Results are shown in Table 4. None of the differences are statistically significant. In
light of the small size of the test set, this is hardly surprising. In general, we should
expect the benefit of adding post-edited data immediately to the knowledge base of the
SMT system to vary widely depending on the repetitiveness of the source text, and on
how well the translation domain is already covered by the background corpus.

4 Related Work

User-adaptive MT has received considerable research interest in recent years. Due
to space limitations, we can only briefly mention a few closely related efforts here.
A survey of recent work can be found, for example, in the recent journal arti-
cle by Bertoldi et al. (2014b). Ortiz-Martı́nez et al. (2010), Bertoldi et al. (2014b),
and Denkowski et al. (2014) all present systems that can be updated incrementally.
Ortiz-Martı́nez et al. (2010) present a system that can trained be incrementally from
scratch with translations that are produced in an interactive computer-aided translation
scenario. The work by Bertoldi et al. (2014b) relies on cache-based models that keep
track of how recently phrase pairs in the translation model and n-grams in the language
models have been used in the translation pipeline and give higher scores to recently
used items. They also augment the phrase table with entries extracted from post-edited
translations. The work by Denkowski et al. (2014) is the closest to the work presented
in this paper.6 Working with the cdec decoder (Dyer et al., 2010), they also use suffix ar-
rays to construct phrase table entries on demand. In addition, they provide mechanisms
to update the language model and re-tune the system parameters.

Focusing on dynamic adjustment of system parameters (feature function values and
combination weights), Martı́nez-Gómez et al. (2012) investigate various online learn-
ing algorithms for this purpose. Blain et al. (2012) and Bertoldi et al. (2014a) describe
6 Incidentally, Denkowski (personal communication) is using the implementation presented here to port the work of

Denkowski et al. (2014) to the Moses framework.

28

online word alignment algorithms that can produce the word alignments necessary for
phrase extraction.

5 Conclusions

I have presented a new phrase table for the Moses system that computes phrase table
entries on the fly. It outperforms existing phrase table implementations in Moses in
terms of speed, without sacrificing translation quality. This is accomplished by a new
way of computing phrase-level conditional probabilities that takes the amount of evi-
dence available into account and discounts probabilities whose estimates are based on
little evidence. Unlike static conventional phrase tables, sampling-based phrase tables
allow for rapid updates of the underlying parallel corpus and therefore lend themselves
to use in an interactive and dynamic machine translation scenario.

Acknowledgements

This work was supported by the European Union’s 7th Framework Programme
(FP7/2007-2013) under grant agreements 287576 (CASMACAT), 287688 (MATECAT),
and 288769 (ACCEPT). I thank the anonymous reviewers for numerous helpful sug-
gestions.

References

Bertoldi, Nicola, Amin Farajian, and Marcello Federico. 2014a. “Online word alignment for online adap-
tive machine translation.” Workshop on Humans and Computer-assisted Translation, 84–92. Gothen-
burg, Sweden.

Bertoldi, Nicola, Patrick Simianer, Mauro Cettolo, Katharina Wäschle, Marcello Federico, and Stefan Rie-
zler. 2014b. “Online adaptation to post-edits for phrase-based statistical machine translation.” Machine
Translation. Accepted for publication. Preprint.

Blain, Frédéric, Holger Schwenk, and Jean Senellart. 2012. “Incremental adaptation using translation
information and post-editing analysis.” 9th International Workshop on Spoken Language Translation,
229–236. Hong Kong.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. 2005. “Scaling phrase-based statistical ma-
chine translation to larger corpora and longer phrases.” 43rd Annual Meeting of the Association for
Computational Linguistics (ACL ’05), 255–262. Ann Arbor, Michigan.

Chiang, David. 2005. “A hierarchical phrase-based model for statistical machine translation.” 43rd Annual
Meeting of the Association for Computational Linguistics (ACL ’05), 263–270. Ann Arbor, Michigan.

Chiang, David. 2007. “Hierarchical phrase-based translation.” Computational Linguistics, 33(2):1–28.

Clark, Jonathan H., Chris Dyer, Alon Lavie, and Noah A. Smith. 2011. “Better hypothesis testing for
statistical machine translation: Controlling for optimizer instability.” Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Pa-
pers - Volume 2, 176–181. Stroudsburg, PA, USA.

29

Clopper, C.J. and E.S. Pearson. 1934. “The use of confidence or fiducial limits illustrated in the case of
the binomial.” Biometrika.

Denkowski, Michael, Chris Dyer, and Alon Lavie. 2014. “Learning from post-editing: Online model
adaptation for statistical machine translation.” Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, 395–404. Gothenburg, Sweden.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil Blunsom, Hendra Se-
tiawan, Vladimir Eidelman, and Philip Resnik. 2010. “cdec: A decoder, alignment, and learning
framework for finite-state and context-free translation models.” Proceedings of the ACL 2010 System
Demonstrations, 7–12. Uppsala, Sweden.

Foster, George F., Roland Kuhn, and Howard Johnson. 2006. “Phrasetable smoothing for statistical ma-
chine translation.” EMNLP, 53–61.

Germann, Ulrich, Eric Joanis, and Samuel Larkin. 2009. “Tightly packed tries: How to fit large models
into memory, and make them load fast, too.” Workshop on Software Engineering, Testing, and Quality
Assurance for Natural Language Processing (SETQA-NLP 2009), 31–39. Boulder, CO, USA.

Jacobs, Adam. 2009. “The pathologies of big data.” Queue, 7(6):10:10–10:19.

Junczys-Dowmunt, Marcin. 2012. “Phrasal rank-encoding: Exploiting phrase redundancy and transla-
tional relations for phrase table compression.” Prague Bull. Math. Linguistics, 98:63–74.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. “Moses: Open source toolkit for statistical machine translation.” 45th
Annual Meeting of the Association for Computational Linguistics (ACL ’07): Demonstration Session.
Prague, Czech Republic.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 2003. “Statistical phrase-based translation.” Human
Language Technology Conference of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL ’03), 48–54. Edmonton, AB, Canada.

Lopez, Adam. 2007. “Hierarchical phrase-based translation with suffix arrays.” EMNLP-CoNLL, 976–
985.

Manber, Udi and Gene Myers. 1990. “Suffix arrays: A new method for on-line string searches.” Pro-
ceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, 319–327.
Philadelphia, PA, USA.

Martı́nez-Gómez, Pascual, Germán Sanchis-Trilles, and Francisco Casacuberta. 2012. “Online adap-
tation strategies for statistical machine translation in post-editing scenarios.” Pattern Recognition,
45(9):3193–3203.

Ortiz-Martı́nez, Daniel, Ismael Garcı́a-Varea, and Francisco Casacuberta. 2010. “Online learning for inter-
active statistical machine translation.” Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, HLT ’10, 546–554.
Stroudsburg, PA, USA.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. “Bleu: a method for automatic
evaluation of machine translation.” ACL 2002, 311–318. Philadelphia, PA.

30

Schwartz, Lane and Chris Callison-Burch. 2010. “Hierarchical phrase-based grammar extraction in
joshua: Suffix arrays and prefix tree.” The Prague Bulletin of Mathematical Linguistics, 93:157–166.

Zens, Richard and Hermann Ney. 2007. “Efficient phrase-table representation for machine translation
with applications to online MT and speech translation.” Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL ’07),
492–499. Rochester, New York.

31

