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SMT at Edinburgh: EU Projects

MOSES CORE
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What is Domain?

The minutes of yesterday’s sitting have been distributed.
Are there any comments? The next item is the state-
ments by the Council and the Commission on the situa-
tion in Palestine.
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What is Domain?

Re: Norton Ghost 15 Install errors and “error in Main
configeration.
nope was during first back-up but I can’t even start Ghost
process without it crashing with taht eror on startup.
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What is Domain?

Yetta, any chicken left from last night?
I’il make you a sandwich.
Make it to go.
Is Shayna coming or what?
Come on, give it to me.

Sub
titl
es
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Definition of Domain?

Encompasses notions of genre and topic.

Practical definition as subcorpus

But

Domains such as news cover many topics
Some domains more different than others

Main issue is difference between training and test data
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The SMT Training Pipeline

Alignment

Rule extraction

Parallel Data

Translation Model

Monolingual Data

Language Model

LM Estimation

Tuning

SMT System

Parallel Data
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The Standard (Phrase-Based) SMT Model

Best translation given by:

e∗ = arg maxe
∑
i

λihi (e, f )

Typical features:

log of forward and reverse translation probabilities
forward and reverse lexical scores
log of language model probability
phrase and word penalty
reordering model scores
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Domain Mismatch: What goes wrong?

unadapted Europarl ≈ 2 million sentences

adapted Europarl plus news-commentary (≈ 140k sentences)

test news commentary

Barry Haddow (University of Edinburgh) Domain Adaptation in Statistical MT 3 October, 2013 10 / 42



What goes wrong? (I)

Source Als gelernter Arabist , der tief in die arabische und
mohammedanische Kultur eingedrungen war . . .

Unadapted As a skilled Arabist , deeply in the Arab and mohammedanische
culture . . .

Adapted As a skilled Arabist steeped in the Arab and Muslim culture . . .

Reference As an Arabist by training , immersed in Arab and Muslim culture

. . .

Occurrences of mohammedanische:

europarl: 0

news-commentary: 13

Seen Error
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What goes wrong? (II)

Source die indische Zentralbank schwimmt im Geld

Unadapted the Indian Central Bank in the money they swim

Adapted India’s central bank is awash in money

Reference India’s central bank is rolling in cash

Translations of schwimmt

Unadapted
swim 2/5
floats 1/5
then something 1/5
then 1/5

Adapted
swim 2/11
is awash 2/11
awash 1/11
rows 1/11

Sense Error
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What goes wrong? (III)

Source . . . suchte Japan auf breiter Front nach Hilfsmitteln und
Innovationen . . .

Unadapted . . . Japan on a broad front sought after aids and innovation . . .

Adapted . . . Japan on a broad front sought after tools and innovations . . .

Reference . . . Japan searched broadly for tools and innovations . . .

Translations of Hilfsmitteln

Unadapted
aid 8/38
tools 6/38
aids 4/38
devices 3/38

Adapted
tools 10/46
aid 8/46
aids 4/46
resources 3/46

Score Error
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Quantify Effect of Domain on Translation Model

in

in+outA

in+outE in+outS

out+in

Assume two corpora (in and out) build 5 different phrase tables
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Experimental Setup

out-of-domain ep European parliament

in-domain
nc News commentary
st Subtitles

Language and reordering model built from all data

Tune and test on in-domain

Average across 8 language pairs
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Supplementing In-Domain Data
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Effect of Adding Data - Conclusions
n
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In-domain entries more useful than in-domain scores

But scores do matter.

Adding out-of-domain data helps fill in gaps in phrase table

Out-of-domain scores are damaging

Adding data at alignment stage nearly always useful
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Which Type of Words are Improved?

Adding out-of-domain appears to help with OOVs?

What about other frequencies?

Measure source-word precision by tracking word translation

Calculate average precision, binned by log frequency (in training).
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Precision vs Frequency (NC)
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Precision vs Frequency (ST)

unk 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
log2(count)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

st
ep+st

Barry Haddow (University of Edinburgh) Domain Adaptation in Statistical MT 3 October, 2013 21 / 42



Precision vs Frequency - Conclusions
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Adding in-domain data boosts performance on low-frequency words

But it reduces performance on medium frequency words

This effect is more pronounced for ST than NC
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Methods for Domain Adaptation in SMT

Domain
Adaptation More data

Web
crawl

Comparable
Corpora

Synthetic
Data

Better data

Selection
Transform-

ation

Better
models

Inter-
polation

Instance
Weighting

Feature
Engi-

neering
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Instance Selection

Instead of using all training data ...

Use only selected data

But how to select?

Modified Moore-Lewis
Select similar to in-domain ...
...but different from out
Use LM perplexity for similarity
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Instance Weighting

Instance selection is a 1-0 weighting

Can we improve by a allowing variable
weights?

Use MML scores for weighting
.. really should learn weights
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WMT13 Experiments

Parallel Training Data

en↔cs en↔es en↔fr en↔ru

europarl

news-comm

UN

GigaFrEn

CommonCrawl

Yandex

Czeng

Test data: Extracted from online news.
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Instance Selection and Weighting - WMT13 Experiments
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Select
Weight

B
le

u 
di

ff 
fr

om
 b

as
el

in
e

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

Barry Haddow (University of Edinburgh) Domain Adaptation in Statistical MT 3 October, 2013 26 / 42



Mixture Models (Interpolation)

Parallel
Data

Parallel
Data

Parallel
Data

Parallel
Data

Usual Approach Mixture Model

Concatenate

Train

Train Train

Interpolate

Barry Haddow (University of Edinburgh) Domain Adaptation in Statistical MT 3 October, 2013 27 / 42



Which models to mix?

Language Model Translation Model Reordering Model

Well-established Benefits less clear One positive result
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Warning: SRILM
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broken!

Barry Haddow (University of Edinburgh) Domain Adaptation in Statistical MT 3 October, 2013 28 / 42



Mixture Models in Practice

rectangle. . .wT log (λp1(e|f ) + (1− λ)p2(e|f )) . . .
Linear

rectangle. . .wT1 log(p1(e|f )) + wT2 log(p2(e|f )) . . .

Vs.

Log-Linear

More natural

Separate
optimisation

Optimise with
MERT etc.

Problems with zeros
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Linear Mixture Models - WMT13 Experiments
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Improving Translation Model Mixture Training

Linear mixture better than log linear

→ But perplexity is indirect and ill-defined objective

What if we could optimise directly for translation performance?

e.g. BLEU

This can be done with Pairwise Ranked Optimisation (PRO)
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PRO: Pairwise Ranked Optimisation

Batch tuning algorithm – optimises standard linear model

Sample pairs of hypotheses from n-best lists

S = {(e11 , e12), . . . (en1 , e
n
2 )}

Feature weights optimised by:

w∗ = arg maxw

n∑
i=1

log
(
σ
(
yi · (scorew(e i1)− scorew(e i2))

))
where σ(x) = 1/(1 + exp(−x))

and yi = sgn
(
bleu(e i1)− bleu(e i2)

)
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PRO for Mixture Model Training

Standard linear model

scorew(e) = h(e) ·w

Interpolated TM makes score() function of mixture weights

m∑
j=1

(
w j · log

(
λjpjA + (1− λj)pjB)

))
+

n∑
j=m+1

w jhj

So just optimise PRO objective for both w and λ!
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Experimental Setup

out-of-domain ep European parliament

in-domain
nc News commentary
st Subtitles

Language and reordering model on all data

Tune and test on in-domain

Average across 8 language pairs

Baseline is concatenation
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PRO for Mixture Models – Results

cs−en de−en en−cs en−de en−es en−fr es−en fr−en
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Feature Engineering for Domain Adaptation

Can now tune models with many features

Can this help with domain adaptation?

Standard Word Word-Topic
matter pdir=0.2,
l pinv=0.4, wp matter important=1 wt matter important T1=1

important ldir=0.5, wt matter important T6=1
linv=0.1
pdir=0.1,

matter pinv=0.6, wt matter matiere T2=1
l ldir=0.4, wp matter matiere=1 wt matter matiere T7=1

matière linv=0.2
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Feature Engineering: Results
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Experiments using IWSLT (TED) Data
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Transforming Data

Training Data

Madame la Présidente, c’est une motion de procédure. Vous avez
probablement appris par la presse et par la télévision que plusieurs
attentats à la bombe et crimes ont été perpétrés au Sri Lanka.

Support Forums

Tu ne retrouve pas ton compte Norton, je te conseille de joindre le
Support des produits Norton et ils seront à meme via différents moyens, de
le retrouver pour toi.

How can we deal with register differences?
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Data Transformations

Informal vs. Formal French

Tu l’as dit toi-même ↔ Vous l’avez dit vous-même
Est-ce que tu as des . . . ↔ Avez-vous des . . .

Two Approaches:

→ Transform the training data
→ Transform the test data

Both methods are effective for tu/vous

Transform test better, but effect is additive

est-ce que transform not effective – too much variety
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Domain Adaptation in SMT: Summary

Heuristic, multi-stage pipeline makes DA difficult

OOVs biggest problem, also score errors

Variety of techniques:

Looked mainly at filtering and model interpolation
Really only tackling score errors

Often no clear winner ... use many languages and data sets
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Domain Adaptation in SMT: What next?

Better analysis of why things work

Move away from data-set as domain

Deal better with informal text – preprocessing

Improve handling of OOVs

Make more use of non-parallel data

Improved pipeline could make DA easier to analyse
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The End

Thank You. Questions?

Collaborators
Pierrette Bouillon, Nadir Durrani, Eva Hasler, Kenneth Heafield, Philipp

Koehn, Manny Rayner
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